

encouraging academics to share statistics support resources

All stcp resources are released under a Creative Commons licence

stcp-gilchristsamuels-7

The following resources are associated:

Checking normality for parametric tests

Paired Samples t-test

Research question type: Difference between (comparison of) two related (paired, repeated or matched) variables

What kind of variables: Continuous (scale/interval/ratio)

Common Applications: Comparing the means of data from two related samples

Example: Teaching Intervention

Research question: Is there a difference in marks following a teaching intervention?

The marks for a group of students before (pre) and after (post) a teaching intervention are recorded below.

Student	Before mark	After mark	Difference	Marks are continuous (scale) data .
1	18	22	4	Continuous data are often
2	21	25	4	summarised by giving their mean
3	16	17	1	and standard deviation, and the
4	22	24	2	naired t-test is used to compare the
5	19	16	-3	moans of the two samples of related
6	24	29	5	
7	17	20	3	uala.
8	21	23	2	The paired t-test compares the
9	23	19	-4	mean difference of the values with
10	18	20	2	zero. It depends upon the mean
11	14	15	1	difference, the standard deviation of
12	16	15	-1	the differences and the number of
13	16	18	2	
14	19	26	7	cases. Various assumptions also
15	18	18	0	need to be made.
16	20	24	4	
17	12	18	6	
18	22	25	3	
19	15	19	4	
20	17	16	-1	
Mean	18.40	20.45	2.05	

© Mollie Gilchrist and Peter Samuels Birmingham City University

Reviewer: Ellen Marshall University of Sheffield

Hypotheses:

The null hypothesis is:

H₀: There is no difference in mean *Pre* and *Post* marks

And the alternative hypothesis is:

H1: There is a difference in mean Pre and Post marks

Steps in SPSS

Enter the data

The data needs to be entered in SPSS in two columns, where one column indicates the pre-mark and the other has the post-mark – see right (a third column provides the case identity numbers).

For the paired samples t-test to be valid the differences between the paired values should be approximately normally distributed.

To calculate the differences between pre- and postmarks, from the Data Editor in SPSS, choose *Transform* -*Compute Variable* and complete the boxes as shown below right.

🔚 TeachingIntervention1.sav [DataSet1] - IBM SPSS Statistics Data Editor										
File	Edit	View	<u>D</u> ata	Transf	orm 4	Analyze	Graph	ns <u>U</u> ti	lities	Add-ons
			Ū.,					3		*,
		ID			Pre			Post		
1	I			1			18			22
2	2			2			21			25
3	3			3			16			17
4	ļ			4			22			24
Ę	5			5			19			16
6	}			6			24			29
7	7			7			17			20
8	}			8			21			23
9)			9			23			19
1	0			10			18			20
1	1			11			14			15
1	2			12			16			15
1	3			13			16			18
1	4			14			19			26

Check the test assumptions

The normality of *Diff* should first be checked – see **Checking normality for parametric** tests worksheet.

There is no evidence for us to suspect that the data is not normally distributed.

Running the paired samples t-test

- Select Analyze Compare Means Paired Samples T-test:
- Select the two paired variables as the Paired Variables, selecting the after variable first (*Post*), followed by the before variable (*Pre*) as shown **below** and click OK

© Mollie Gilchrist and Peter Samuels Birmingham City University Reviewer: Ellen Marshall University of Sheffield

Results

The output should look like the table below:

Γ	Paired Samples Test										
						95% Confidenc Differ	e Interval of the ence				
			Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)	
	Pair 1	Post - Pre	2.050	2.837	.634	.722	3.378	3.231	19	.004	

Notice that this option also gives you the sample summary data.

The t statistic (t) is 3.231, and p-value (Sig. (2-tailed)) is 0.004. Therefore we may reject the null hypothesis (that there was no difference between the means of the two groups) and conclude that there is strong evidence of a difference in the means.

Conclusion

There is strong evidence (t = 3.23, p < 0.01) that the teaching intervention improves marks. The estimated improvement is approximately 2 marks. Alternatively this can be described as an **effect size** given by the absolute value of the difference in means (2.050) divided by the standard deviation (2.837) which is approximately 0.72 (this is classified as a large effect).

Of course, if we were to take other samples of marks, we might get a 'mean paired difference' in marks different from 2.05. The 'Lower' and 'Upper' limits of the **95% confidence interval** tell us that we can be 95% confident that the population mean difference between the *Pre* and *Post* marks is between 0.72 and 3.38 marks.

You would need to consider if this difference in marks is practically important, not just statistically significant.

Notes

- If the difference between the before and after values is not normally distributed then it should still be possible to run a paired t-test provided that the sample size is greater than 30 and the distribution is not very skewed: see (Rhiel and Chaffin, 1996) and (Zumbo and Jennings, 2002). This can be assessed by inspecting a histogram or the data or the value of the skewness statistic (both available in SPSS via Analyze > Descriptive Statistics > Explore).
- 2. If the paired t-test cannot be used the Wilcoxon signed rank test should be used instead.

Reference

- Rhiel, G. S. and Chaffin, W. W. (1996) An investigation of the large-sample/small-sample approach to the one-sample test for a mean (sigma unknown). *Journal of Statistics Education*, 4(3). Available at: http://www.amstat.org/publications/jse/v4n3/rhiel.html.
- Zumbo, B. D. and Jennings, M. J. (2002) The robustness of validity and efficiency of the related samples t-test in the presence of outliers, *Psicológica*, 23(2), pp. 415-450.

